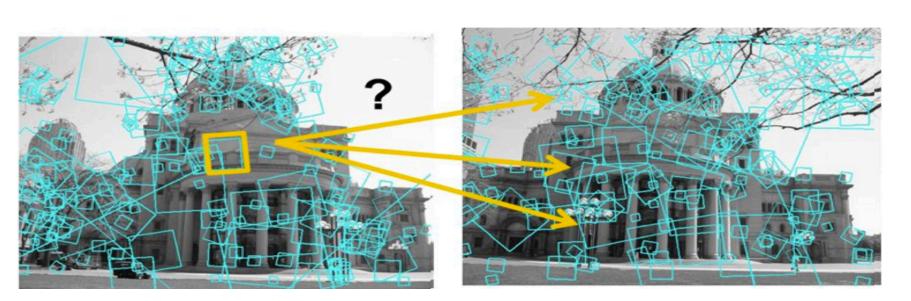
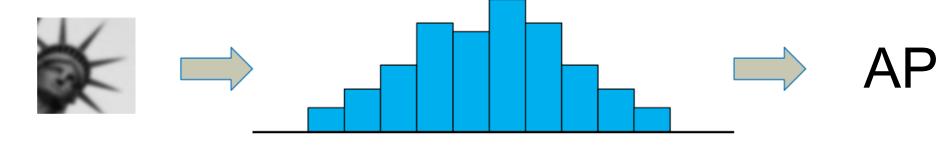


Learning Local Features

• Traditional (local feature based) computer vision pipelines:



SIFT Keypoint Descripto


- We learn Local Feature Descriptors for vision pipelines
- By optimizing for the **Feature Matching** stage

Optimizing Feature Matching Performance

- Feature matching is nearest neighbor retrieval w/ binary relevance
- Common evaluation metric: Average Precision (AP)

• Optimize AP: [Paper 367] Hashing as Tie-Aware Learning to Rank

- Binary descriptors: directly reuse TALR
- Real-valued descriptors: reduce to TALR by **distance quantization**

Local Descriptors Optimized for Average Precision

Yan Lu² Kun He¹ ¹Boston University

"Learning to Rank" View

- Most existing methods: local ranking with triplets
- Optimization issues (hard negative mining, sampling)
- Ours: listwise ranking
- Direct optimization, no complex heuristics

42x42

32x32

Task-Specific Improvements

• **Geometric Alignment**: Spatial Transformer module [2]

Conv

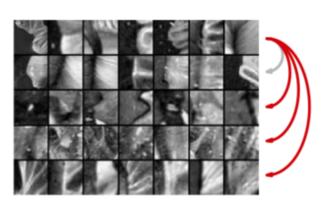
Conv

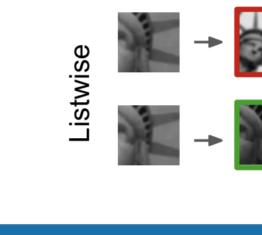
Conv

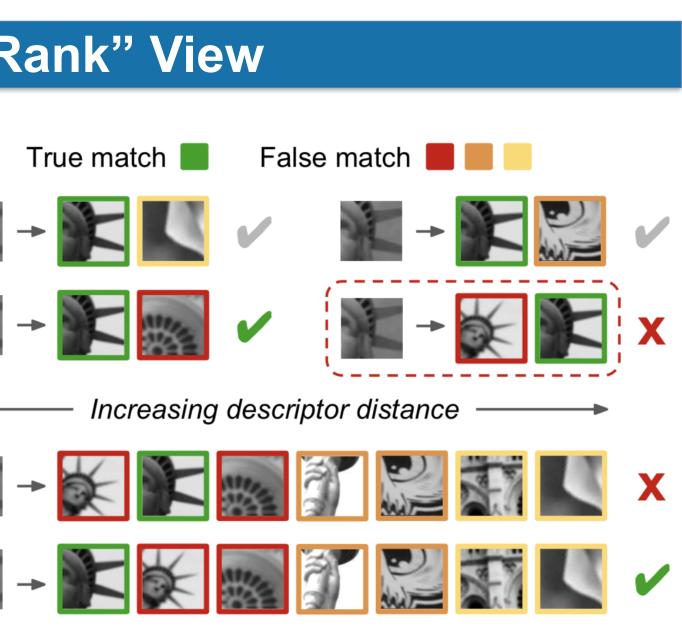
6-DOF Affine

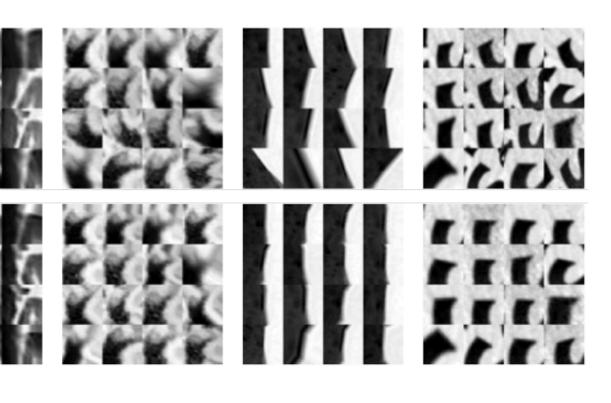
Bilinear Sampling



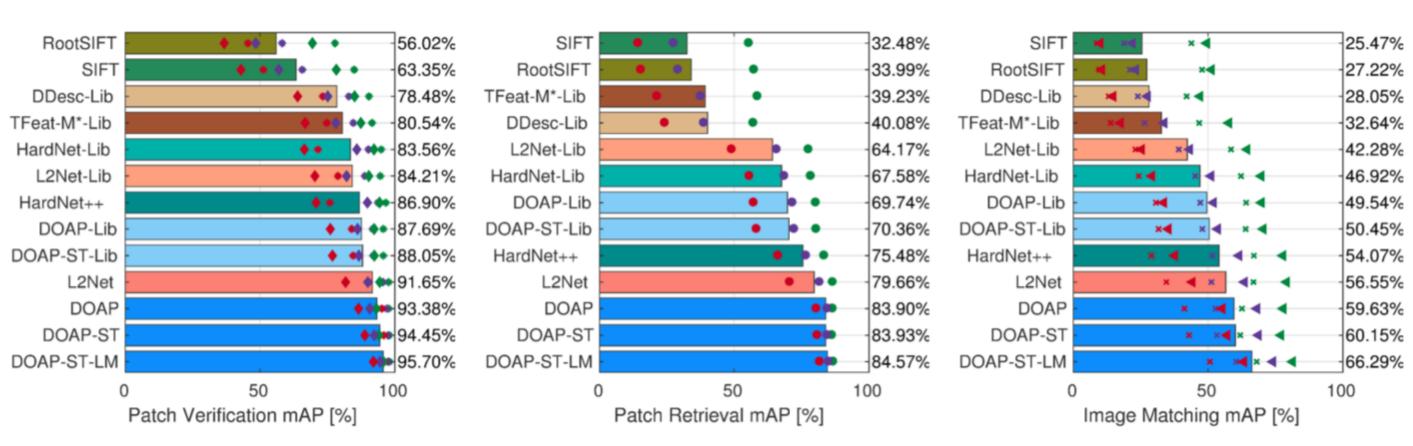

- Label Mining on HPatches dataset [3]
- Cluster patches to mine in-sequence hard negatives







Stan Sclaroff¹ ²Honda Research Institute USA


UBC Phototour / Brown dataset: patch verification

Method	Train	Notredame	Yosemite	Liberty	Yosemite	Liberty	Notredame	FPR95
	Test	Liberty		Notredame		Yosemite		Mean
SIFT	128	29.84		22.53		27.29		26.55
MatchNet (CVPR'15)	128	7.04	11.47	3.82	5.65	11.6	8.70	8.05
TFeat-M* (BMVC'16)	128	7.39	10.31	3.06	3.80	8.06	7.24	6.64
TL-AS-GOR (ICCV'17)	128	4.80	6.45	1.95	2.38	5.40	5.15	4.36
DC-2ch2st+ (CVPR'15)	512	4.85	7.20	1.90	2.11	5.00	8.39	4.19
L2Net+ (CVPR'17)	128	2.36	4.7	0.72	1.29	2.57	1.71	2.23
HardNet+ (NIPS'17)	128	2.28	3.25	0.57	0.96	2.13	2.22	1.90
DOAP+	128	1.54	2.62	0.43	0.87	2.00	1.21	1.45
DOAP-ST+	128	1.47	2.29	0.39	0.78	1.98	1.35	1.38

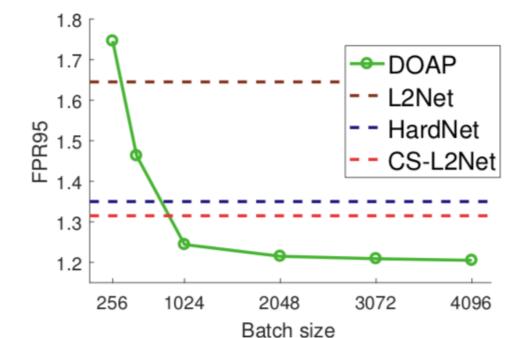
RomePatches [3]: patch retrieval

Method	Coverage	Dim.	Train	Test
SIFT	51x51	128	91.6	87.9
AlexNet-conv3	99x99	384	81.6	79.2
PhilippNet (arXiv'14)	64x64	512	86.1	81.4
CKN-grad (ICCV'15)	51x51	1024	92.5	88.1
DOAP	51x51	128	95.9	88.4
Binary DOAP	51x51	256	95.2	86.8

• HPatches [3]: patch verification/retrieval, image matching 116 image sequences (76 train, 40 test), 2.5M patches

References

[1] Y. Tian, B. Fan, F. Wu. L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space, CVPR 2017


[2] M. Jaderberg et al. Spatial Transformer Networks, NIPS 2015 [3] M. Paulin et al. Local Convolutional Features with Unsupervised Training for Image

Retrieval, ICCV 2015

[4] V. Balntas*, K. Lenc*, A. Vedaldi, K. Mikolajczyk. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR 2017

Experiments

* DIFFSEQ • SAMESEQ • VIEWPT × ILLUM EASY HARD TOUGH

