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• We learn Local Feature Descriptors for vision pipelines 
• By optimizing for the Feature Matching stage

“Learning to Rank” ViewLearning Local Features Experiments

Optimizing Feature Matching Performance Task-Specific Improvements

• Geometric Alignment: Spatial Transformer module [2]
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• Label Mining on HPatches dataset [3] 
• Cluster patches to mine in-sequence hard negatives

• UBC Phototour / Brown dataset: patch verification

• RomePatches [3]: patch retrieval

• HPatches [3]: patch verification/retrieval, image matching 
116 image sequences (76 train, 40 test), 2.5M patches

• Optimize AP: [Paper 367] Hashing as Tie-Aware Learning to Rank 

• Binary descriptors: directly reuse TALR 
• Real-valued descriptors: reduce to TALR by distance quantization

• Most existing methods: 
local ranking with triplets 

• Optimization issues (hard 
negative mining, sampling) 

• Ours: listwise ranking 
• Direct optimization, no 

complex heuristics

• Feature matching is nearest neighbor retrieval w/ binary relevance 
• Common evaluation metric: Average Precision (AP)

• Traditional (local feature based) computer vision pipelines:
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