

Hashing: Learning to Optimize AP / NDCG

- Hashing: binary embeddings for fast Nearest Neighbors
- Evaluation: Average Precision (AP), Normalized Discounted Cumulative Gain (NDCG), etc.

• Problem: with Hamming distance, ranking has ties

• Tie-aware ranking metrics [1]: average over all permutations of tied items, in **closed-form**

$$AP_{T}(R^{(d)}) = \frac{n_{d}^{+}}{n_{d}N^{+}} \sum_{t=N_{d-1}+1}^{N_{d}} \frac{N_{d-1}^{+} + (t - N_{d-1} - 1)\frac{n_{d}^{+} - 1}{n_{d-1}} + 1}{t}$$
$$DCG_{T}(R^{(d)}) = \sum_{i \in R^{(d)}} \frac{G(\mathcal{A}_{q}(i))}{n_{d}} \sum_{t=N_{d-1}+1}^{N_{d}} D(t) = \sum_{v \in \mathcal{V}} \frac{G(v)n_{d,v}}{n_{d}} \sum_{t=N_{d-1}+1}^{N_{d}} P(t)$$
$$e \text{ Key operation:}$$
$$Histogram binning \qquad \bigcirc \rightarrow \square$$

Hashing as Tie-Aware Learning to Rank

Kun He, Fatih Cakir, Sarah Adel Bargal, Stan Sclaroff Computer Science, Boston University

Optimizing Tie-Aware AP / NDCG

D(t)

- Optimization: combinatorial, NP-hard (search over all bit combinations)
- To apply SGD: continuous relaxation!
- Main trick: reverse "midpoint rule": finite sums \rightarrow continuous integrals

$$AP_{r}(R^{(d)}) = \frac{c_{d}^{+}(c_{d}^{+}-1)}{N^{+}(c_{d}-1)} + \frac{c_{d}^{+}}{N^{+}c_{d}} \left[C_{d-1}^{+} + 1 - \frac{c_{d}^{+}-1}{c_{d}-1}(C_{d-1}+1) \right] \ln \frac{C_{d}}{C_{d-1}},$$

$$DCG_{r}(R^{(d)}) = \ln 2 \sum_{v \in \mathcal{V}} \frac{G(v)c_{d,v}}{c_{d}} \int_{C_{d-1}+1}^{C_{d}+1} \frac{dt}{\ln t}.$$

End-to-end optimization (closed-form gradients)

Differentiable histogram binning [2]

Tie-Breaking Matters

- No tie-awareness in **training**: optimization objective unclear! • No tie-awareness in **testing**: ambiguity in results, even exploitation!

- Binary affinity (metric: AP)

	CIFAR-10					NUS-WIDE					
Method	12 Bits	24 Bits	32 Bits	48 Bits		12 Bits	24 Bits	32 Bits	48 Bits		
BRE [18]	0.361	0.448	0.502	0.533	S1 (AP _T)	0.561	0.578	0.589	0.607	AP_{T}	
MACHash [30]	0.628	0.707	0.726	0.734		0.361	0.361	0.361	0.361		
FastHash [23]	0.678	0.729	0.742	0.757		0.646	0.686	0.698	0.712		
StructHash [22]	0.664	0.693	0.691	0.700		0.639	0.645	0.666	0.669		
DPSH [20]*	0.720	0.757	0.757	0.767		0.658	0.674	0.695	0.700		
DTSH [42]	0.725	0.773	0.781	0.810		0.660	0.700	0.707	0.723		
MIHash [4]	0.687	0.775	0.786	0.822		0.652	0.693	0.709	0.723		
TALR-AP	0.732	0.789	0.800	0.826		0.709	0.734	0.745	0.752		
Method	16 Bits	24 Bits	32 Bits	48 Bits		12 Bits	24 Bits	32 Bits	48 Bits		
DPSH [20]*	0.908	0.909	0.917	0.932	L L L	0.758	0.793	0.818	0.830	5K	
DTSH [42]	0.916	0.924	0.927	0.934	(A)	0.773	0.813	0.820	0.838	(B)	
MIHash [4]	0.929	0.933	0.938	0.942	S2	0.767	0.784	0.809	0.834	AF	
TALR-AP	0.939	0.941	0.943	0.945		0.795	0.835	0.848	0.862		

Multi-level affinity (metric: NDCG)

Method		NUS-	WIDE		LabelMe				
	16 Bits	32 Bits	48 Bits	64 Bits	16 Bits	32 Bits	48 Bits	64 Bits	
BRE [18]*	0.805	0.817	0.827	0.834	0.807	0.848	0.871	0.880	
MACHash [30]	0.821	0.821	0.821	0.821	0.683	0.683	0.683	0.687	
FastHash [23]	0.885	0.896	0.899	0.902	0.844	0.868	0.855	0.864	
DPSH [20]	0.895	0.905	0.909	0.909	0.844	0.856	0.871	0.874	
DTSH [42]	0.896	0.905	0.911	0.913	0.838	0.852	0.859	0.862	
StructHash [22]	0.889	0.893	0.894	0.898	0.857	0.888	0.904	0.915	
MIHash [4]	0.886	0.903	0.909	0.912	0.860	0.889	0.907	0.914	
TALR-NDCG	0.903	0.910	0.916	0.927	0.866	0.895	0.908	0.917	

References

- [1] F. McSherry, M. Najork. Computing Information Retrieval Performance Measures Efficiently in the Presence of Tied Scores, ECIR 2008.
- [2] E. Usnitova, V. Lempitsky. Learning Deep Embeddings with Histogram Loss, NIPS 2016.

Experiments

• Image retrieval by Hamming ranking, VGG-F architecture

