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1. Introduction

This manuscript describes the implementation of a mini-batch dual solver for the multiplicative kernel
structural SVM used in [1]. The solver is written from scratch (except for wrapping around a QP solver),
and uses dual coordinate ascent style updates, similar to SMO [2, 3, 4], SDCA [5], and D. Ramanan’s linear
structural SVM solver [6]. The use of a mini-batch update strategy resulted in a 10x speed up over batch
solutions (see [1]).

2. Preliminaries

First let’s revisit the setup in [1]. We are given a training set S = {(xi, yi)}ni=1, where each training
pattern xi ∈ X is an image, and each training label yi = (Bi, θi) ∈ Y encodes the location (bounding box
B) and pose (angle θ) of an object in that image. For simultaneous localization and pose estimation, our
goal is to learn a scoring function f such that yi = arg maxy∈Y f(xi, y).

The scoring function f is parameterized as f(x, y) = 〈w,Ψ(x, y)〉, where w is a parameter vector, and
Ψ(x, y) is a joint feature map. The inner product 〈·, ·〉 is defined in a reproducing kernel Hilbert space
H, instantiated by a joint kernel function: K(x, y, x′, y′) = 〈Ψ(x, y),Ψ(x′, y′)〉. In [1], the joint kernel
function is restricted to a multiplicative form, i.e.

K(x, y, x′, y′) = Ks(Φ(x,B),Φ(x′, B′)) ·Kp(θ, θ
′) (1)

= Φ(x,B)>Φ(x′, B′) · exp
(
−γ ∠(θ, θ′)2

)
(2)

Here, Φ(x,B) represents the feature vector extracted from the image region inside bounding boxB in image
x, and ∠(·, ·) is the angular distance. Ks is linear for efficiency considerations, and Kp is a RBF kernel.

2.1. SVM Primal

The learning formulation is a n-slack structural SVM [7]:

min
w,ξ

1

2
‖w‖2H +

C

n

n∑
i=1

ξi (3)

s.t. 〈w,Ψ(xi, yi)〉−〈w,Ψ(xi, y)〉 ≥ ∆(yi, y)− ξi, ∀i,∀y ∈ Y (4)

where the task loss term ∆(yi, y) encodes the penalty of predicting y instead of yi, and C is a weighting
parameter.

Note that we slightly depart from [7] and drop the explicit nonnegativity constraints on the slack variables,
and allow y to freely range over Y in (4). But in fact this is equivalent to [7]’s formulation: in (4), assuming
∆(yi, yi) = 0, setting y = yi gives the constraint ξi ≥ 0. Therefore the nonnegativity constraints are
naturally encoded in this formulation.
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2.2. SVM Dual

For notational brevity, we use a shorthand:

δΨ(i, y)
∆
= Ψ(xi, yi)−Ψ(xi, y). (5)

And it is easy to verify that

〈δΨ(i, y), δΨ(j, y′)〉 = K(xi, yi, xj , yj)−K(xi, y, xj , yj)−K(xi, yi, xj , y
′) +K(xi, y, xj , y

′). (6)

Assigning a nonnegative dual variable αi,y to each constraint (4) in the primal, and applying Lagrangian
duality, the dual program can be derived as:

max
α≥0

− 1

2

n∑
i,j=1

∑
y,y′∈Y

αi,yαj,y′〈δΨ(i, y), δΨ(j, y′)〉+

n∑
i=1

∑
y∈Y

αi,y∆(yi, y) (7)

s.t.
∑
y∈Y

αi,y =
C

n
,∀i (8)

and the parameter vector (conceptually, since Ψ may not be explicit) is reconstructed as

w =

n∑
i=1

∑
y∈Y

αi,yδΨ(i, y). (9)

Remark: the sums over y ∈ Y might be problematic in the case of a continuous label space Y , as the
number of such y’s is infinite. In the actual realization of this program we always use a discretized (and thus
finite) version of the Y space, e.g. using 16 equally spaced viewpoint angles (see page 7 in [1]).

3. Mini-Batch Dual Coordinate Ascent

As usual, we use a cutting plane algorithm for optimizing the dual program. However, a batch cutting
plane algorithm (e.g. the 1-slack reformulation [8] that we had tried) usually has undesirable scaling proper-
ties. Therefore a mini-batch algorithm was proposed in [1] to speed up learning. The idea is to incrementally
generate cutting planes by traversing the training set in mini-batches, and update the model after each mini-
batch is processed. Since the updates are applied to the dual variables α, this is essentially a dual coordinate
ascent strategy.

The sketch of the algorithm: in iteration t,

1. sample a mini-batch of training pairs {(xs, ys)|s ∈ St},

2. generate and cache cutting planes for ∀s ∈ St using the current model wt−1,

3. update the dual program with all cached cutting planes and resolve,

4. update the cache to retain the active cutting planes.

3.1. Caching Cutting Planes with Working Sets

By cutting plane, we refer to a difference vector δΨ(i, y) as defined in (5) for some (i, y). Of course, we
cannot explicitly construct δΨ(i, y). However, since we only need kernel evaluations, it suffices to store the
quantities needed for kernel evaluations involving δΨ(i, y). Recall that

δΨ(i, y) = Ψ(xi, yi)−Ψ(xi, y) = Ψ(xi, (Bi, θi))−Ψ(xi, (B, θ)), (10)



it can be verified that caching the following four items is enough: {Φ(xi, Bi),Φ(xi, B), θi, θ}. In the
remainder of this manuscript we will continue to refer to δΨ(i, y) for notational convenience, but readers
should be aware of its actual representation.

We use a working set, denotedWi, for each training pair (xi, yi), to cache the generated cutting planes
during learning. Conceptually, we writeWi = {δΨ(i, y)|αi,y > 0, y 6= yi}, ∀i. Then, at any point during
learning, the set of active cutting planes (i.e. support vectors) is the union of all the working sets. Further
space saving is possible by creating a lookup table for feature vectors Φ indexed by (i, B). This way, each
Φ(xi, Bi), ∀i is cached at most once.

As is common practice, in our implementation removing inactive cutting planes from the working sets
(step 4 of algorithm sketch) is only done occasionally, as constraints may re-enter the cache after being
removed. A heuristic, that we borrowed from [8]’s implementation, is to check the working sets every D
iterations, and remove cutting planes that have been inactive for at least L iterations. A reasonable choice
can be D = 20, L = 10.

3.2. Generating Cutting Planes

Given (intermediate) model w and a tolerance parameter ε > 0, constraints of the form (4) that are vio-
lated more than ε (cutting planes) are found via loss-augmented inference, and the corresponding δΨ(i, y)’s
are added to the working sets. Please refer to [1] for details of loss-augmented inference.

Remark: there is no restriction that only one cutting plane be generated for a training pair in each
iteration. In fact, generating multiple divserse cutting planes in each iteration helps structural SVM training
[9]. This is accomodated in our solver implementation.

3.3. Mini-Batch Sampling

Different strategies exist. We have tried uniform sampling, non-uniform (importance weighted) sampling,
and sequentially going through a randomly permuted training set. The last strategy is what we ultimately
chose; before each pass over the training set (epoch), we randomly permute the training examples. In [1]’s
experiments we found 2 epochs is enough to train a good model. But of course, this is data-dependent.

3.4. Updating Dual Variables

Suppose at iteration t, we have sampled a mini-batch St and have generated a set of cutting planes
{δΨ(s, yts)|∀s ∈ St} (for simplicity, assuming one cutting plane per training pair). Now we need to update
the dual variables. Let α(St) = {αs,yts |∀s ∈ St}. A true dual coordinate ascent (more precisely, dual block
coordinate ascent) solution would be to fix the values of all other dual variables, and only update α(St), for
which closed-form solution is likely available. An example where the batch size is 1 is Sequential Minimal
Optimization (SMO), used in [2, 3, 4] and others.

We implemented SMO-style closed-form updates for α(St). However, in our experiments, we found
that when the problem size is not very large, updating all dual variables (by resolving the entire QP) after
each mini-batch is actually efficient. The reason is that loss-augmented inference dominates training time
in practice (more than 95% in our experiments, and many vision applications). This allowed us to simply
resolve the entire QP after each mini-batch. The immediate benefit is that coding complexity is reduced
(only need to call the QP solver); also, a potential benefit is faster convergence since in each iteration,
updates are made to all dual variables instead of those in a single block.

Remark: in an online setting (e.g. [4]) or where loss-augmented inference is efficient enough, doing
closed-form SMO updates may prove to be beneficial.

4. Algorithm Pseudocode

Now we are finally ready to describe the algorithm pseudocode. Algorithm 1 is the overall flow.



Algorithm 1 Dual solver for kernel structural SVM
1: procedure SOLVEDUAL(S = {1, . . . , n}, ε, C,D,L)
2: Wi ← φ, i = 1, . . . , n . init working sets
3: t← 0
4: repeat
5: t← t+ 1
6: δΨ← ∪ni=1{δΨ(i, y)|y ∈ Wi} . collect cutting planes
7: ∆← ∪ni=1{∆(yi, y)|y ∈ Wi} . and their corresponding loss values
8: (α, ξ) = SolveQP(δΨ,∆,W, C) . construct QP as in (7)(8)
9: if mod(t,D) = 0 then

10: Wi = RemoveInactive(Wi, L), i = 1, . . . , n
11: end if
12: St = SampleMiniBatch(S, t)
13: Pt = FindCuttingPlanes(α, δΨ, St, ξ, ε) . Pt is a set of (i, y) pairs
14: Wi ←Wi ∪ {y|(i, y) ∈ Pt},∀i ∈ St . expand working sets
15: until no constraint violated more than ε can be found
16: end procedure

Note that in Algorithm 1, again for notational convenience, we slightly modified the definition of working
sets to only store the “violating” labels returned by FindCuttingPlanes, and treated δΨ as an oracle
that can be freely queried by providing (i, y) pairs. However in reality, as discussed before, actual feature
vectors need to be cached.

Next, the key subroutine of constructing and solving QP. We used the QP solver from [10]. The primal
slack variables ξ need to be recovered as a result of solving the QP, since FindCuttingPlanes will
need them to determine the amount of constraint violations. Also, note that the constraint in the actual QP
should be an inequality as opposed to the equality in (8), since at any point the y’s cached in a working set
Wi is an incomplete enumeration of the entire Y space.

Algorithm 2 Constructing and solving QP
1: procedure SOLVEQP(δΨ,∆,W, C)
2: G(i,y),(j,y′) ← 〈δΨ(i, y), δΨ(j, y′)〉, ∀δΨ(i, y), δΨ(j, y′) ∈ δΨ, (i, y) 6= (j, y′) . Gram matrix
3: α = arg minα≥0

1
2α
>Gα−∆>α, s.t.

∑
y∈Wi

αi,y ≤ C
n ,∀i . note the ≤ constraint

4: for i = 1 to n do
5: ξi = max{maxy∈Wi{∆i,y −

∑
(j,y′) G(i,y),(j,y′) · αj,y′}, 0}

6: end for
7: end procedure
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